Exercise 29

Find the orthogonal trajectories of the family of curves. Use a graphing device to draw several members of each family on a common screen.

$$
x^{2}+2 y^{2}=k^{2}
$$

Solution

To find the orthogonal trajectories, we have to solve for $y^{\prime}(x)$, set y_{\perp}^{\prime} equal to the negative reciprocal, and then solve for y_{\perp}. Start by differentiating both sides of the given equation with respect to x.

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+2 y^{2}\right) & =\frac{d}{d x}\left(k^{2}\right) \\
2 x+2 * 2 y \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{x}{2 y}
\end{aligned}
$$

Here is where we introduce y_{\perp}.

$$
\frac{d y_{\perp}}{d x}=\frac{2 y_{\perp}}{x}
$$

Since this equation is separable, we can solve for y_{\perp} by bringing all terms with y_{\perp} to the left and all constants and terms with x to the right and then integrating both sides.

$$
\begin{aligned}
d y_{\perp} & =\frac{2 y_{\perp}}{x} d x \\
\frac{d y_{\perp}}{y_{\perp}} & =\frac{2}{x} d x \\
\ln \left|y_{\perp}\right| & =2 \ln |x|+C
\end{aligned}
$$

Exponentiate both sides.

$$
\begin{aligned}
e^{\ln \left|y_{\perp}\right|} & =e^{2 \ln |x|+C} \\
\left|y_{\perp}\right| & =|x|^{2} e^{C} \\
y_{\perp} & = \pm|x|^{2} e^{C} \\
y_{\perp} & =A x^{2}
\end{aligned}
$$

Therefore, the orthogonal trajectories are the family of parabolas centered at the origin.

Figure 1: Plot of the ellipses $(k=1,2,3,4)$ and their orthogonal trajectories $(A=$ $-4,-3, \ldots, 3,4)$.

